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Coupled Mode Analysis of a Finline

JERZY MAZUR anp MICHAL MROZOWSKI

Abstract —A theoretical analysis of a unilateral finline loaded with
arbitrary inhomogeneous lossy dielectric material is presented. The rigor-
ous coupled mode approach is used. The electromagnetic field in the line is
expressed in terms of the modes of a ridged waveguide and the problem is
transformed to a matrix eigenvalue equation. Approximate expressions are
derived for investigating the properties of the fundamental mode in finlines
loaded with dielectric slabs. Dispersion characteristics, the characteristic
impedance, and the attenuation due to dielectric losses and the finite
conductivity of metal coating are computed for various line configurations.
The numerical results are compared with data obtained by means of the
spectral-domain method, proving the validity and usefulness of the pro-
posed approach.

I. INTRODUCTION

INCE THE finline was first proposed in 1974 by

Meier [1] as a new transmission line for millimeter-
wave integrated circuits, E-plane printed waveguides have
been established for use in low-cost millimeter systems.
The application of finlines has been discussed by many
authors and various theoretical analyses have been pro-
posed to study their general properties. The existing litera-
ture concerning planar structures, finlines in particular, is
vast and only a few of the publications will be referred to
in this paper. More exhaustive lists of references can be
found in the comprehensive reviews published by Solbach
[2] and Jansen [3].

Approximate solutions for the finlines, including disper-
sion diagrams and the characteristic impedance of the
fundamental mode, can be obtained using the equivalent
model approach [4], curve fitting [5], the modified TLM
method [6], or the modified transverse resonance method
[7]. Exact methods stem from the full-wave, hybrid-mode
formulation of the boundary value problem and allow one
to obtain a field solution for dominant as well as higher
order modes necessary for characterization of finline dis-
continuities. Among the various techniques, the spectral-
domain method (SDM), first proposed by Itoh and Schmidt
[8], proved to be particularly suitable for numerical imple-
mentation and since then has become a widely accepted
standard. This technique was then developed and results of
the investigation of various properties of finlines, including
the characteristic impedance [9], attenuation due to dielec-
tric and conductor losses [10], and the effect of finite
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metallization thickness [11], have been published. Among
other rigorous approaches at least one, namely the mode-
matching procedure [12], [13], should be mentioned. This
method, although less numerically efficient then the SDM,
can be used to investigate more general finline configura-
tions with more than one dielectric region, finite fin thick-
ness, and substrate mounting grooves [13].

Both exact and approximate methods are used, with
certain exceptions [10], to study idealized lossless struc-
tures. Moreover, the homogeneity of the dielectric sub-
strate in the direction parallel to the fins is a prerequisite
to most of the theoretical analyses. Among the aforemen-
tioned procedures, only the mode-matching method is
theoretically able to provide an accurate solution for fin-
line structures loaded with dielectric slabs inhomogeneous
in both the E and H planes.

In this paper we propose a simple and efficient method
for analyzing a finline loaded with arbitrary inhomoge-
neous lossy dielectric material. The analysis is based on the
coupled mode method for investigating nonideal wave-
guides [14], [17] or structures containing isotropic or
anisotropic inserts [15], {16]. The electromagnetic field in
the line is expanded into series of eigenfunctions of a
ridged waveguide, and the boundary value problem is
transformed into a matrix eigenvalue equation. The pro-
posed method, in its full form, is accurate. Moreover, it
also offers useful, almost analytical approximate expres-
sions for investigating the properties of the fundamental
mode in finlines loaded with dielectric slabs, including
dispersion characteristics, the characteristic impedance, and
the attenuation due to dielectric losses and the finite
conductivity of metal coating.

II. ANALYSIS

The cross section of the analyzed line is shown in Fig.
1(a). The solution to the boundary value problem describ-
ing electromagnetic wave propagation in the z direction in
the structure under investigation can be found using the
coupled mode method [14]-{16]. In this procedure the
fields in the analyzed guide are expressed in terms of the
fields of a second, basis waveguiding structure whose modal
solutions are known, The analyzed structure may be re-
garded as a modification of a ridged guide with ridges of
zero thickness (Fig. 1(b)). This affinity allows us to assume
that the electromagnetic field in the investigated structure
can be expressed in terms of the fields of ridged guide. Let
@”’: and %Z: denote the eigenfunctions corresponding to the
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Fig. 1. Cross-sectional view of (a) the analyzed finline and (b) basis
structure.

modes of the ridged guide. The eigenfunctions are normal-
ized and orthogonal; i.e., they satisfy the following rela-
tion:

fa:(&x ) ae=s, (1)

where §,, is the Kronecker delta.

According to the coupled mode procedure we expand
the transverse field components in the analyzed guide into
series of the eigenfunctions:
E =Y 0,(z2)&,(x, ) H=Yi,(2)%,(x.y) ()

n n
where v,(z) =v,e#* and i,(z)=e,e™ P are the un-
known amplitudes and f; is the propagation constant of
the analyzed guide. Using (2) and bearing in mind the
orthonormality relation (1), we transform Maxwell’s equa-
tions to the coupled mode equations:

Ul == jBlZlil - jzinKan
dz »

i,=— jBYu, i=1,2,-

- jZUnKtni’ (3)

In the above equations f3,, Y,, and Z, denote the propaga-
tion constant, the wave adrmttance and the impedance of
the ith mode of the ridged guide, respectively, whereas
K., and K, are the coefficients describing the couplings
between modes of the ridged guide that result from the
perturbation caused by the dielectric insert. The coupling

coefficients are given by the following equations:
g y g €q
k, N
,,,,=n—0fg[(e—1)wﬁn-é; | a1

k €—
Kan = _0 [
Mo @

&, a@*}dQ

n Tz

(4)

€
where  is the cross section of the analyzed guide and &,
and 7, are, respectively, the wavenumber and the intrinsic

impedance of free space.
Equations (3) can be cast into matrix form, yielding

jo-[:]-

(5)
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with

and

Bl 13 m

where l denotes the unity matrix.

Equation (5) constitutes a matrix eigenvalue problem,
which implies that the unknown propagation constant S,
as well as the expansion coefficients v,,i, can be easily
found as the eigenvalues and eigenvectors of matrix Q.

=BY3,+K

tnt

A. Eigenfunctions of a Ridged Guide

In order to solve (5) we have to determine the eigenfunc-
tions of the basis structure. A ridged waveguide supports
TE and TM modes. The eigenfunctions corresponding to
these modes can be derived from the scalar potentials
and ¢. Since there are no closed-form expressions for the
scalar potentials in the ridged guide, we use for their
determination the spectral-domain procedure [8]-[11], [19].
Expanding into Fourier series the unknown potentials in
regions 1 and 2 on both sides of the ridges and taking into
account the boundary conditions on the screening walls as
well as the symmetry properties with respect to the plane
y = ¢, we obtain

= Y Clcosh(aty

n=0

)cos (k,x)

Y= — ¥ Cleosh[al(a—y)]cos(k,x)  (6)
and
= ) C;sinh(ayy)sin(k,x)
n=1
¢, = Zlc:sinh[az(a—y)]sin(k,,x) (7)
where _

ey _ 12 _ 2 _ p2
o, =k, = Phiey kg Bh(.e)

with k,=nw/b. In the above expressions the symbols %
and e correspond to TE and TM modes, respectively.

The eigenfunctions &, and Qfl can be obtained from
the following relations [17]

2
Priey =

Ar——vy  H=-jlya  &=Arxa,
ko
(8)
. P Lo s -
gtez_vtqb g;’:__] Oq)az %eo__ texaz
0
(9)
where v, = (3/0x)a, +(3/3y)a,.

The continuity conditions in the plane y = ¢ bring about
a functional equation relating current densities on the
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ridges to the electric field in the slot. The functional

equation is solved using the Galerkin procedure in the

Fourier domain. This technique requires the expansion of
the field inside the slot into series of known basis functions
with unknown coefficients. As a result of the procedure we
obtain an infinite set of homogeneous equations:

_ coth(ac)
2022(2 0)~,,,,,;j,,——7,_=’0,
m=1 n=0 a,
j=12,--- (10)
for TE modes and
ascoth(aic) .
Z Z Xpn ,’;"—_—_kT___: ) ]=1a2,
m=1 n

(11)

for TM modes. In formulas (10) and (11) é, denotes the
nth Fourier term of the mth basis function and a’ and a¢,
are the unknown amplitudes. The determinant of the above
set of equations is set to zero, yielding the dispersion
equation for the TE or TM modes of the ridged guide.
Once the root of the dispersion equation 8 is found, it is
substituted into (10) and (11) and the resulting set of
equations is solved, giving the amplitudes of basis func-
tions.

The yet unknown expansion coefficients C* and C¢ are
related to the Fourier transforms of the field between fins
by the following equations:

2 8 Z aflné‘xmn
Cpm— 2 =a}C! 12
" b a!sinh(alc) At (12)
2 Z améxm"
Cce== -2t = atCe. (13)

" b k,sinh(agc)

In order to ensure the orthonormality of the eigenfunc-
tions we have to normalize amplitudes a and af. For this
purpose we use the following normalization conditions for
the scalar potentials [17]:

1

[oyrda=— f¢¢*d9——2 (14)
Q P.

If these conditions are fulfilled the eigenfunctions are also

normalized. Using (12) and (13) together with (6), (7), and

(14), we obtain

~ . (-1/2
ab ICH? [ sinh(2alc)
t=|—pi . — +1 15
i [2phn§02—5,,0 2a (15)
~ . (—1/2)
ab |C¢|* [ sinh(2agc)
¢=|—p? . -1 . (16

B. Single-Mode Approximation

Using the procedure outlined above, we may obtain a
rigorous solution for a wide range of waveguiding struc-
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Fig. 2. Cross-sectional view of a symmetrical structure of a finline
loaded with dielectric slabs.

tures. The accuracy of the method depends on the number
of eigenfunctions taken into account in the field expan-
sion. Note that up to now the analysis was general. In
particular we did not assume any particular shape of the
dielectric insert. Presently we shall concentrate on the
analysis of lines loaded with slabs of rectangular cross
section and symmetrical with respect to the plane x = b /2
(Fig. 2). Finlines operating in the millimeter-wave range
use thin, low-permittivity dieleciric substrate. Thus, we
may assume that the dielectric perturbs mainly the funda-
mental TE;, mode of the ridged guide. Owing to the
symmetry of the structure we may also put k,=2nn/b.
The coupled mode equations take, in this case, the follow-
ing form:

val Bth
Byt = (BYY/ + Kpy ) v} (17)
with Z!=kgn,/Bt. Note, that since E,=0, K,;, equals

Zero.

Additionally, in this paper we shall use only a single
function to approximate the electric field between fins.
The determinantal dispersion relation then becomes a
transcendental equation which can be readily solved even
on a personal computer.

C. Propagation Constant and Characteristic Impedance

Having determined the eigenfunctions of the basis guide,
we can compute the coupling coefficient K,;. Let us
assume that the investigated line is loaded with L slabs. In
this case we have

L
0
Ky =— Z (51—1)E (18)
Mo =1
with
b—d, V:+1 e
F={ &y &t dudy. (19)
d, ¥

Using (8) together with (6) we obtain

F;Z Z Z k k Chch[cclss

n'-"mTn
n=1m=1

+ Z Z ahahchchlss Icc

nrmn M Yum Xpm

n=0m=0

(20)
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Fig. 3. Comparison of this method with SDM [9] (e=2.2). (a) Wavelength ratio A /Ay (b) Characteristic impedance.
(Dimensions in mm, fins and slot are centered.) (a) (b)
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where
f cos(k x)cos (k,,x) dx
b~d
I f ‘sin{k ,x)sin(k,x) dx (21)
nm d[
ce b h h
I -j cosh(a!y)cosh{aky)dy
11
! .
(f,:mzfl2sinh(aﬁy)s1nh(afny) dy (22)
1
with i =y, L=y i yy<cand [=c—y, . Lh=c—
yify>e

Once the coefficient K,j; is found we can obtain from
{17) the following approximate analytic expression for the
propagation constant in the investigated line:

sz = 6{12“‘ kgnoKay. (23)

The characteristic impedance is defined as

WP
== (24)

c

where

-

(

(b+w)/2 (b +w)/2
&y, dx= viaf o

Ex‘yEde = ”1[(

b—w)/2 b~w)/2

= plijh.

f 7, (&x oF*) dg
Substituting U and P into (24) we obtain
Z, = Zf}a 12lé

D. Conductivity and Dielectric Losses

(25)

ol

Attenuation due to the finite conductivity of the fins
and screening walls can be found by means of the pertur-
bation method [17]. The conductivity losses may be ex-
pressed as

ngﬂmgnx d\dl

o, = (26)

2P

where R,,=/kgn,/20. In the above formulas o is the
conductivity of the metal and 7 is a unit vector normal to
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Fig. 4. Companson of this method with SDM [11] (¢ = 3.8. Dimensions
in mm, fins and slots are centered.)

the contour d§2. Substituting (8) and (26) we obtain

= S\ B ot as s ). @

Detailed expressions for the integrals appearing in formula
(27) are given in the Appendix.

Dielectric losses can be obtained directly from (23).
Assuming that the relative permittivity of the ith slab is
given by

o

€, =¢,— je; tand,
with tand,; being the loss tangent, and substituting it into
(23) we get

L
Yf2 = 1hz+ ké E (e, jeitansci)E
1=1
Thus, the dielectric losses are given by
L

k(% Z €l tans(lE

=1

7 (29)

;=

III. NuMEerIicaL RESULTS

The analysis presented in the previous section was im-
plemented on a personal computer. To verify the accuracy
of the method, the numerical results were compared with
data available from the literature. Most of the curves
presented in this paper were obtained using the following
functions approximating the electric field between fins:
(29)

€x =1
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o« (] 0! 0z he(, (%)
6r 17
St 106
bt {05
ir 104
Zr 103

Ton

W0 W 50 45 &0 B5 10 75 80 8 W [ioHe)

Fig. 6. Conductivity loss «, and dielectric loss a, versus frequency
for the finline described in Fig. 3. (1and, =2.0-107%, ¢=13.33-10*
1/2 mm. Dimensions in mm, fins and slot are centered.)

if w/b>0.8 or
1

T yw2—(x-b/2)°

if w/b<08. The numerical results obtained by this
method for a finline with a low-permittivity substrate
(e=2.2) are shown in Fig. 3 together with data published
by Knorr and Shayda [9], who used the SDM. Very good
agreement was observed for the propagation constant, and,
provided that the slot is narrow compared to the line
height, also for the characteristic impedance. The accuracy
of the approximate formulas derived in this paper de-
creases with the frequency. This can be readily explained
from the fact that the E, field cornponent, which becomes
significant at higher frequencies, was ignored in the TE,;
mode approximation. Fig. 4 shows the influence of the
permittivity of the substrate (e = 3.8) on the accuracy of
the numerical results. The dispersion characteristic is accu-
rate over a wide frequency range (2 percent difference at

(30)
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Fig. 7. Propagation characteristics of a finline with WR-12 shield (cf.
Fig. 3) loaded with dielectric slabs (e =22, w/b=0.2, r=0.127 mm.
Dimensions in mm, fins and slot are centered.)

f=80 GHz) in relation to the curve published by
Kitazawa and Mittra [11]. However, as could have been
expected, a greater discrepancy compared with the
low-permittivity case is observed for the characteristic
impedance curve.

The dielectric and conductivity losses for two different
line configurations are displayed in Figs. 5 and 6. In order
to avoid the nonconvergent series in conductivity loss
computations, resulting from the unbounded magnetic field
component near the edge of an infinitely thin conductor
which leads to a non-square integrable integrand in pertur-
bation formula (27), the function approximating the field
between slots had to be modified. The following represen-
tation was taken in place of (30):

1

(31)

2 [w2 B (x B b/2)2] /3"

The losses shown in Fig. 5 have values and character
similar to the results published by Mirshekar-Syahkal and
Davies [10]. Fig. 6 illustrates the frequency behavior of the
losses for different slot widths. The attenuation due to the
finite conductivity of the metal is approximately ten times
higher than the dielectric loss. Both conductivity and di-
electric losses increase as the slot width decreases.
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Fig. 8. Propagation characteristics of a finline with WR-12 shield (cf
Fig. 3) loaded with dielectric slabs (¢, =€, =22, w/b=02, 1, =1, =
0.0635 mm. Dimensions in mm, fins and slot are centered.)

Figs. 7-9 show the curves of the propagation constant
and the characteristic impedance for structures loaded
with dielectric material inhomogeneous in both the E
plane and the H plane. The dielectric slab placed in the
slot region reduces the impedance of the line. The stronger
effect is observed for the slab placed directly over the slot
(Fig. 9).

IV. CONCLUSIONS

A theoretical coupled mode analysis of a finline loaded
with arbitrary inhomogeneous lossy dielectric material was
presented. The method is exact if an infinite number of
modes of a ridged waveguide are used io construct the
field inside the line. Approximate, almost analytical ex-
pressions were derived for investigating the properties of
the fundamental mode in finlines loaded with dielectric
slabs. Propagation characteristics including dispersion dia-
grams, the characteristic impedance, and dielectric and
conductivity losses were computed for various line config-
urations. The calculations were compared with results of
spectral-domain analysis. Good agreement was observed
for lines with low-permittivity substrates, proving the va-
lidity and usefulness of the proposed approach.

The method can be applied to study other finline config-
urations for which the SDM is inadequate. In particular, it
allows one to investigate the propagation in finlines con-
taining gyromagnetic material [18].
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Fig. 9. Propagation characteristics of a finline with WR-12 shield (cf.
Fig. 3) loaded with dielectric slabs (¢, =€, =22, w/b=02, f{=1,=
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APPENDIX

The contour integrals appearing in formula (27) are
given by

b IV Pd=2(1,+21,+21,) (A1)
Q
b 1P di=2(1,+215+21L) (A2)
aQ
where
2 b,
=Y ¢t kﬁf sin® (k,x) dx (A3)
n=1 0

L=Y Y aﬁaf’nCnhC,ﬁ,'[csinh(aﬁy)sinh(af’ny) dy
n=0m=0 0
(Ad)
L=Y Y kk,CiClcosh( i‘c)cosh(a’;,c)
n=1m=1
[T s (e ) sin () (AS5)
0
I,=Y, C,f’szcosz(knx) dx (A6)
n=0 0

1

(2]

(6]

(71

191

(101

(11]

12

(13]

[14]

[15]

[16]

(17

(18]

(19]

287

L=Y Y CnhCrf;/ecosh(af,’y)cosh(af’ny)dy (A7)
0

n=0m=0

I;=Y Y C!C}cosh(alc)cosh(alc)

n=0m=10

-/(bg wVzcos(k,,x)cos(kmx) dx (A8)
0
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